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LETTER TO THE EDITOR 

Re-entrant phenomena in thin film layering transitions 

R Kariotist and J J PrentisS 
t School of Mathematical and Physical Sciences, University of Sussex, Brighton BNl 9QH, 
UK 
$ School of Natural Science, University of Michigan, Dearborn, MI 48128, USA 

Received 25 February 1986 

Abstract. The p against T plane is studied for the lattice gas and ASOS models of a 
two-dimensional interface using both the cumulant expansion version of the real space 
renormalisation group and low temperature perturbation theory. Contrary to results 
obtained using the Migdal-Kadanoff approximation re-entrant behaviour (at fixed p )  is 
seen. The same models in one dimension have also been solved (numerically) .and similar 
effects are seen, supporting the two-dimensional results. 

In recent years considerable progress has been made in the understanding of thick 
and thin film growth (for reviews see Pandit et a1 (1982) and Sullivan and Telo da 
Gama (1985)). Phenomena such as layering (de Oliveira and Griffiths 1978), wetting 
(de Gennes 1985) and roughening (Weeks 1980) have all been investigated using a 
variety of theoretical tools such as thermodynamics (Sullivan 1979, Cahn 1977), 
mean-field theory (Hauge and Schick 1983), Monte Carlo simulation (Ebner 1980, 
1981) and renormalisation group (Saam 1983, Nightingale et a1 1984, Kroll and 
Lipowsky 1982, Fisher and Huse 1985). 

Most theoretical calculations use models which, for convenience, ignore certain 
excited modes of the interface. Huse et a1 (1985) have pointed out that overhangs 
and bubbles, while unimportant on length scales larger than the bulk correlation length, 
nevertheless influence the critical properties of the interface. Kariotis and Suhl (1985) 
considered the influence of surface irregularities on the roughening transition. In 
particular, the work of Nightingale et a1 uses an effective column potential of 

V ( h ) = - B - A / h 2  h>O 

= O  h=O 

where h, a positive integer, is the column height and A and B are parameters that 
represent the adatom-substrate and the adatom-adatom interaction. The form of this 
potential excludes the possibility of fluctuations in the surface of the deposited adatoms. 
In this letter we consider the effects that these surface excitations have on the phase 
diagram in the p against T plane. 

The Hamiltonian for the ASOS (absolute solid-on-solid) model is given by 
(Nightingale et a1 1984, Weeks 1980) 

H = J 1 Ihi - hjl + c [ -phi  + V (  h i ) ]  
ij I 
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where hi is a non-negative integer and represents the column height above the substrate 
at site i. p is the chemical potential of the adatoms and V ( h )  is the (single-column) 
potential energy for a column of height h. V ( h )  contains effects due both to the 
adatom-substrate and adatom-adatom interactions. A discussion of the form in 
equation (1) (which we will use below) is given by Nightingale et al. The approximation 
that this represents is that surface fluctuations not included in V (  h )  can be accounted 
for in the nearest-neighbour term in H. The result leads to a tractable form for the 
partition function which can be evaluated using real space renormalisation group 
( RSRG) techniques in the Migdal-Kadanoff ( MK) approximation. The phase diagram 
in the p against T plane that is found within the MK approximation shows boundaries 
that separate regions of integral film thickness, and whose behaviour is monotonically 
decreasing with increasing temperature. No re-entrant behaviour appears; that is, there 
are no regions in which p (  T) along the phase boundaries increases as T increases. 

We have calculated the phase diagram using the cumulant expansion form of the 
RSRG and found that, contrary to the statement made by Nightingale et al, the slope 
of the phase boundaries is not monotonic, suggesting the existence of re-entrant 
behaviour. This effect was then compared with calculations done on one-dimensional 
models, and also with those performed using low temperature perturbation theory. In 
both cases the re-entrant behaviour was found. The manner in which these results 
were obtained is as follows. 

In order to perform an RG calculation we use an N x N matrix which represents 
the interaction between two neighbouring sites that are in states n, and n2 respectively 
(n,, n2 are one of N possible states at each site). The ASOS nearest-neighbour interaction 
is 

Htj(nl> n2) = J l n l -  nzl+ v(nI)+ v ( n 2 ) - p ( n ,  + n2).  (3) 
This determines the initial interaction. The first renormalised and subsequent interac- 
tions are obtained using the single diagram of the cumulant expansion (see Niemeyer 
and van Leeuwen 1974) shown in figure 1. The projection operator which was used 

7 L 

Figure 1. The first diagram in the cumulant expansion of the real space renormalisation 
group. The three sites which make up cell A have heights n,  , nz and ng. Those of cell B 
have heights n4, n5 and n6. 

takes the ‘height’ of the cell to be the average of the three height variables of the 
individual sites that make up the cell: 

P ( h A ,  {h i } )=6[h , - f (h i+h ,+h , ) I .  (4) 

H ’ ( S  0 = 2 W ( n 1 ,  %))- Tln[Zo(k)Zo(~)I ( 5 a )  

The renormalised interaction is given by 
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where 

Zo( I )  = Tr ePBHAP( I ,  {hi}). 

/3 = 1 / T  and HA is the 3-site Hamiltonian for cell A (see figure 1): 

H is an N x N matrix, where N is the maximum height allowed for the height variables 
hi (taken to be 20).  Transitions between states in which ( h ) =  1 and ( h ) =  I + m  are 
determined by the initial values of T and p where the behaviour H( I ,  I )  + -00 makes 
a transition to H( I +  m, I +  m )  + -00, all other diagonal elements being less negative. 

The results of the cumulant version of the RSRG applied to the ASOS Hamiltonian 
are shown in figures 2 ( a )  and ( b ) .  Figure 2 ( a )  is equivalent to figure 1 of Nightingale 
et a1 but in this case, the coexistence lines separating regions of different film thickness 
can be seen to bulge upward very slightly for thin films. If one were to express the 
pressure in terms of p as 

p = T In( P /  Po) - T In( T /  ( 7 )  

this would literally require that in some regions of the phase plane (for fixed p )  a 
decrease in film thickness would result with increasing T, and hence P. This effect is 
even more pronounced in figure 2( b )  where the scale of the energy has been decreased 
by a factor of 10, resulting in the appearance of a low temperature triple point. The 
bulging seems to become smaller as the film thickness increases. 

In addition to the ASOS model we have also investigated a similar calculation carried 
out on the lattice gas model (de Oliveira and Griffiths 1978) in order to determine if 
the re-entrant effect is particular to the ASOS model. In this theory the Hamiltonian is 

H = c v0ninj +E [ -p  + V( i ) ] n i  
ij I 

where the indices i , j  refer to the three-dimensional coordinate of each site (which may 
be either occupied ( n  = 1) or not ( n  = 0)). V(i) is the van der Waals potential, 
V( i) = U,/ i3. The RSRG works the same here as in the ASOS model except that the 
‘state’ of each column is assigned an integer that unambiguously determines which 
sites within the column are occupied or not. For the ASOS, a height h fixes exactly the 
state of the column; for the lattice gas, a ‘binary’ number is given by 

where each n? is a site variable in column A at the ith layer above. the substrate. Thus 
LA = 0 corresponds to zero layers on the substrate, LA = 1 corresponds to one layer, 
LA=3 corresponds to two, L A = 7  to three, etc. Once the set of states are given their 
respective LA values, an interaction matrix H ( L A ,  LB) between column A in state LA 
and column B in state LB can be constructed using the Hamiltonian (8). When H is 
thus obtained, the RSRG is applied as before, and the results are shown in figure 3. 

For temperatures below the critical temperature, the layering transitions occur in 
a well ordered sequence. The critical temperatures T,(n)  are of course functions of 
the van der Waals parameter uo and the height above the substrate, and the behaviour 
in this region is considerably complex, but the transition from layered to striped 
behaviour is distinct. This effect was first discussed in the context of interface behaviour 
by Huse et a1 (1985) and a more detailed study of this model will be given elsewhere 
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Figure 2. ( a )  The p against T phase plane showing the phase boundaries separating 
states of different film thickness. For comparison, we chose A = -2.0 and B = 1.5 as in 
figure 1 of Nightingale er a/ (1984). ( b )  The same as in ( a )  with A = -0.2 and B = 0.15. 

(Kariotis and Prentis 1986). For the purpose of the present study, it is sufficient to 
observe that the re-entrant effect is clearly present along the phase boundary separating 
zero and two layers, and zero and one stripe. 

We turn now to the case of calculations on one-dimensional models. It is conceiv- 
able that the re-entrant behaviour which results from the above transformation is not 
a real physical effect but rather arises from the nature of the approximation itself. 
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Figure 3. The p against T phase plane for the lattice gas model. To the left of the critical 
temperatures, the phase boundaries separate states with distinct film thickness of I = 0, 
I = 2, I = 3. To the right of the critical temperatures striped phases occur, denoted S = OOO, 
S = 001, etc. 

Kaufman and Griffiths (1983) have shown that for second-order phase transitions the 
usual form of the cumulant expansion violates thermodynamic convexity in the low 
temperature region. Although our method (which is used here only for first-order 
transitions) does not generate a free energy as the iteration proceeds, it is necessary 
to be sure that the re-entrant effect is not in some sense a result of the properties of 
the transformation. In order to check this, we have also investigated the one- 
dimensional ASOS Hamiltonian which can be solved exactly (albeit numerically). The 
partition function in this case is written as a product of 'transfer' matrices, which 
means that beginning with the definition 

2 = Tr e-BH (10) 
where 

the trace can be re-expressed in the form 
00 

Z =  n e-B"ii+,. 
{q) i=-m 

Each site variable is a non-negative integer n = 0 , 1 , 2 , .  . . . The matrix 
exp[-/3Hii+,(nl, n,)] can be diagonalised (numerically) in the same manner used for 
the Ising model (see Pathria 1972 p 419). If we write the largest eigenvalue as 
A l  = exp(E,), then the coverage (or film thickness) is given by 

1 = ( h )  = T aEl/ap. (12) 
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Figure 4. The against T phase plane for the one-dimensional ASOS Hamiltonian. The 
values used were A = -5, B = 10 and V was taken to be linear in K 3  rather than h-’ 
because of the change in dimension of the substrate. 

This is plotted in figure 4 for the ASOS model where contours of fixed coverage clearly 
exhibit the re-entrant effect. Qualitatively similar results were found with the lattice gas. 

Finally, we consider a low temperature perturbation theory calculation which was 
performed on the ASOS Hamiltonian in three (bulk) dimensions. The free energy, F, 
of the system for small T can be calculated for a film of thickness 1 and I + 1 each, 
and then at coexistence F (  I )  = F (  1 + 1). From this an expression for p (  T) on the phase 
boundary can be obtained. To lowest order in the expansion parameter exp(-P4J), 
we found that the re-entrant effect will not appear at all for thick films but that it does 
appear for the phase boundaries separating layers of thickness 1 = 0 and I = 1, and 
1 = 1 and I = 2 respectively if -A > +B. This is in accord with the results shown in 
figure 2 ( a )  which indicate that the effect becomes increasingly smaller as the film 
becomes thicker. 

Hauge and Schick (1983) have shown that there exists a Clausius-Clapeyron 
equation for the phase boundaries in the p against T plane separating layers of 
thickness I ,  and lz 

d p  AS 
d T  A I  
-- 

where AS is the change in entropy between layer l2 and I ,  and AI is the change in 
thickness. If we consider a boundary separating two regions that differ in thickness 
by 1 then 

d p / d T =  -(&-SI). (14) 

S,  and SI are the entropy of the thicker and thinner layers respectively. If the thicker 
film has greater entropy than the thinner one, then the phase boundaries must have 
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negative slope. The re-entrant effect which we have described above suggests that 
there is, at sufficiently low temperatures, a region where S2 < SI .  The physical explana- 
tion behind this is as follows. The entropy density of an ideal gas is 

s = ( ; - p / T ) n  (15) 

where n is the number density. For small T and large (negative) p, which necessarily 
means thin film, the entropy of the gas plus film is dominated by the gas. As T increases 
at fixed p the entropy density of the gas may increase slightly but the total entropy 
of the gas plus film can become still larger if more volume is made available to the 
gas, i.e. if the film becomes thinner. As T increases further, the entropy of the gas 
begins to make a smaller contribution to the total entropy of the combined system and 
it is the film that determines the overall value. At that point, the slope of the phase 
boundaries will be negative. 

In summary, we have shown, using renormalisation group and perturbation theory 
calculations on two two-dimensional models and exact numerical calculations on these 
models in one dimension, that re-entrant behaviour in the p against T phase plane 
appears for thin films. The explanation of the effect is that at low pressure and 
temperature, the entropy density of the gas is sufficient to favour a thin film over a 
thicker one. 

This work was supported in part by a grant from the Science and Engineering Research 
Council (UK). 
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